Abstract
A quantum finite multi-barrier system, with a periodic potential, is considered and exact expressions for its plane wave amplitudes are obtained using the Transfer Matrix method (Colangeli et al. in J Stat Mech Theor Exp 6:P06006, 2015). This quantum model is then associated with a stochastic process of independent random walks on a lattice, by properly relating the wave amplitudes with the hopping probabilities of the particles moving on the lattice and with the injection rates from external particle reservoirs. Analytical and numerical results prove that the stationary density profile of the particle system overlaps with the quantum mass density profile of the stationary Schrödinger equation, when the parameters of the two models are suitably matched. The equivalence between the quantum model and a stochastic particle system would mainly be fruitful in a disordered setup. Indeed, we also show, here, that this connection, analytically proven to hold for periodic barriers, holds even when the width of the barriers and the distance between barriers are randomly chosen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.