Abstract

In this article we consider the transport of an adsorbing solute in a two-region model of a chemically and mechanically heterogeneous porous medium when the condition of large-scale mechanical equilibrium is valid. Under these circumstances, a one-equation model can be used to predict the large-scale averaged velocity, but a two-equation model may be required to predict the regional velocities that are needed to accurately describe the solute transport process. If the condition of large-scale mass equilibrium is valid, the solute transport process can be represented in terms of a one-equation model and the analysis is simplified greatly. The constraints associated with the condition of large-scale mass equilibrium are developed, and when these constraints are satisfied the mass transport process can be described in terms of the large-scale average velocity, an average adsorption isotherm, and a single large-scale dispersion tensor. When the condition of large-scale mass equilibrium is not valid, two equations are required to describe the mass transfer process, and these two equations contain two adsorption isotherms, two dispersion tensors, and an exchange coefficient. The extension of the analysis to multi-region models is straight forward but tedious.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.