Abstract
We study dc and ac transport along armchair graphene nanoribbons using the k⋅p spectrum and eigenfunctions and general linear-response expressions for the conductivities. Then, we contrast the results with those for transport along ordinary waveguides. In all cases, we assess the influence of elastic scattering by impurities, describe it quantitatively with a Drude-type contribution to the current previously not reported, and evaluate the corresponding relaxation time for long- and short-range impurity potentials. We show that this contribution dominates the response at very low frequencies. In both cases, the conductivities increase with the electron density and show cusps when new subbands start being occupied. As functions of the frequency, the conductivities in armchair graphene nanoribbons exhibit a much richer peak structure than in ordinary waveguides: in the former, intraband and interband transitions are allowed, whereas in the latter, only the intraband ones occur. This difference can be traced to that between the corresponding spectra and eigenfunctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.