Abstract

We consider the effect of thermal phonon displacements on the coherent transport in carbon nanotubes. The atomic displacements are generated using tight-binding molecular dynamics simulations, and the conductances are computed using a nonequilibrium Green's function technique. Atomic displacements due to lattice vibrations lead to different levels of conductance reduction and fluctuation on the massive and massless bands of a metallic nanotube. Different conduction regimes are studied by examining the resistance on different length scales. The temperature-induced displacements have a significant impact on the ballistic or diffusive transport in carbon nanotube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.