Abstract
We prove some theorems on the existence, uniqueness, stability and compactness properties of solutions to inhomogeneous transport equations with Sobolev coefficients, where the inhomogeneous term depends upon the solution through an integral operator. Contrary to the usual DiPerna–Lions approach, the essential step is to formulate the problem in the Lagrangian setting. Some motivations to study the above problem arise from the description of polymeric flows, where such kind of equations are coupled with other Navier–Stokes type equations. Using the results for the transport equation we will provide, in a separate paper, a sequential stability theorem for the full problem of the flow of concentrated polymers. At the end of the note we also point out a relevant example about the strong stability of the continuity equation, which highlights the role of an important assumption in our main stability statement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.