Abstract

Quasi-classical theory of superconductivity provides a powerful and yet simple description of the superconductivity phenomenology. In particular, the Eilenberger and Usadel equations provide a neat simplification of the description of the superconducting state in the presence of disorder and electromagnetic interaction. However, the modern aspects of superconductivity require a correct description of the spin interaction as well. Here, we generalize the transport equations of superconductivity in order to take into account space-time dependent electromagnetic and spin interactions on equal footing. Using a gauge-covariant Wigner transformation for the Green-Gor'kov correlation functions, we establish the correspondence between the Dyson-Gor'kov equation and the quasi-classical transport equation in the time-dependent phase-space. We give the expressions for the gauge-covariant current and charge densities (quasi-particle, electric and spin) in the transport formulation. The generalized Eilenberger and Usadel limits of the transport equation are given, too. This study is devoted to the formal derivation of the equations of motion in the electromagnetic plus spin plus particle-hole space. The studies of some specific systems are postponed to future works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.