Abstract

We derive a suite of generalized Boltzmann equations, based on the density-matrix formalism, that incorporates the physics of neutrino oscillations for two- and three-flavor oscillations, matter refraction, and self-refraction. The resulting equations are straightforward extensions of the classical transport equations that nevertheless contain the full physics of quantum oscillation phenomena. In this way, our broadened formalism provides a bridge between the familiar neutrino transport algorithms employed by supernova modelers and the more quantum-heavy approaches frequently employed to illuminate the various neutrino oscillation effects. We also provide the corresponding angular-moment versions of this generalized equation set. Our goal is to make it easier for astrophysicists to address oscillation phenomena in a language with which they are familiar. The equations we derive are simple and practical, and are intended to facilitate progress concerning oscillation phenomena in the context of core-collapse supernova theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call