Abstract

The environmental spread of hydrophobic pollutants has been receiving attention because of specific characteristics of these compounds that make them resistant to degradation, thus causing various toxic effects on humans as a result of their bioaccumulation. Here, we report the role of zucchini major-latex like proteins (MLPs) on the accumulation of hydrophobic pollutants, as consumption of contaminated crops is one of the main routes for accumulation. Transgenic tobacco plants expressing an aryl hydrocarbon receptor (AhR) gene with a β-glucuronidase (GUS) inducible expression system were transformed with one of the three zucchini MLP genes (PG1, GR1, and GR3). MLP transgenic plants showed a significant increase in the fold induction of GUS activity compared to the parental AhR tobacco plants when one of the most toxic polychlorinated biphenyl (PCB) congeners, 3,3′,4,4′,5-pentachlorobiphenyl (CB126), was applied. GUS activity was detected in both aerial parts and roots after treatment with the strong carcinogen 3-methylcholanthrene. Phenotypic changes in the MLP tobacco during incubation with CB126 were also observed. The MLP transgenic plant PG1 responded to treatment with 0.32 nM CB126, whereas vector control plants significantly induced GUS activity at 200 nM CB126. Moreover, GUS activities in the MLP plants treated with other PCB congeners were significantly higher than those in the plants given the mock treatment. As GUS activities in the aerial parts of the plants were significantly correlated with the accumulation level of PCBs, these results strongly suggest that zucchini MLPs are related to the translocation of hydrophobic pollutants from the roots to the aerial parts through their binding affinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call