Abstract

We implement a 2-qubit entangling Mølmer-Sørensen interaction by transporting two cotrapped ^{40}Ca^{+} ions through a stationary, bichromatic optical beam within a surface-electrode Paul trap. We describe a procedure for achieving a constant Doppler shift during the transport, which uses fine temporal adjustment of the moving confinement potential. The fixed interaction duration of the ions transported through the laser beam as well as the dynamically changing ac Stark shift require alterations to the calibration procedures used for a stationary gate. We use the interaction to produce Bell states with fidelities commensurate to those of stationary gates performed in the same system. This result establishes the feasibility of actively incorporating ion transport into quantum information entangling operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call