Abstract

We study electric transport near the Mott metal-insulator transition in a triangular-lattice Hubbard model at half filling. We calculate optical conductivity $\sigma(\omega)$ based on a cellular dynamical mean field theory including vertex corrections inside the cluster. Near the Mott critical end point, a Drude analysis in the metallic region suggests that the change in the Drude weight is important rather than that in the transport scattering rate for the Mott transition. In the insulating region, there emerges an "ingap" peak in $\sigma(\omega)$ at low $\omega$ near the Mott transition, and this smoothly connects to the Drude peak in the metallic region with decreasing Coulomb repulsion. We find that the weight of these peaks exhibits a power-law behavior upon controlling Coulomb repulsion at the critical temperature. The obtained critical exponent suggests that conductivity does not correspond to magnetization or energy density of the Ising universality class in contrast to several previous works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.