Abstract
We present a comprehensive study of transport coefficients including DC electrical conductivity and related optical properties, electrical contribution to the thermal conductivity, and the shear viscosity via ab initio molecular dynamics and density functional theory calculations on the “priority 1” cases from the “Second Charged-Particle Transport Coefficient Workshop” [Stanek et al., Phys. Plasmas (to be published 2024)]. The purpose of this work is to carefully document the entire workflow used to generate our reported transport coefficients, up to and including our definitions of finite size and statistical convergence, extrapolation techniques, and choice of thermodynamic ensembles. In pursuit of accurate optical properties, we also present a novel, simple, and highly accurate algorithm for evaluating the Kramers–Kronig relations. These heuristics are often not discussed in the literature, and it is hoped that this work will facilitate the reproducibility of our data.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.