Abstract

Abstract Equilibrium molecular dynamics computer simulations have been used to determine the transport coefficients of model Ar—Kr mixtures, which are represented by Lennard-Jones pair potentials with Lorentz—Berthelot rules for the cross-species interactions. The component self-diffusion and mutual-diffusion coefficients are calculated from time correlation functions and mean square displacements. Time correlation functions are used to evaluate the shear and bulk viscosity, thermal conductivity and the thermal diffusion coefficient (Soret/Dufour coefficient). In the case of the thermal transport coefficients, the partial enthalpy of the two species is required at each state point to define the heat flux rigorously. We obtain this and the partial volume (and species resolved chemical potential) using particle-exchange (and particle insertion) techniques implemented in separate [NPT] simulations at the same state point. The viscoelasticity of the fluids is characterised by the relaxation times for bulk and...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call