Abstract

A theoretical analysis is made of the heat, mass and momentum transfer from an evaporative liquid sphere which is suddenly introduced into a parallel stream of fluid at a higher temperature. The velocity field around the liquid sphere is assumed to be steady and of the Hadamard-Rybczynski type. Numerical solutions of energy and the vapour mass continuity equations have been carried out using the alternate direction implicit scheme of finite difference method. Temporal histories of the average Nusselt and Sherwood numbers (Nu, Sh) alongwith the drag coefficient (C D ) during the life time of an evaporating drop have been predicted in terms of the pertinent input parameters, namely, initial and instantaneous Peclet number (Pe i ,Pe), Lewis number (Le), and the ratio of free stream to initial droplet temperature (T ′ /T i ). Variations of local Nusselt and Sherwood numbers withPe, in the region of steady state evaporation, have also been presented. Values ofNu for steady state droplet evaporation are found to be in fair agreement with the corresponding values evaluated from the empirical equation of Eisenklam [5].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call