Abstract

A stochastic model of the revised Enskog equation is considered. A choice of the smearing function suggested by the work of Leegwater is used to apply the model to the repulsive part of the Lennard-Jones potential and the inverse-power soft-sphere potential. The virial coefficients obtained from the equilibrium properties of the models are in excellent agreement with the known exact coefficients for these models. The transport coefficients for the repulsive Lennard-Jones (RLP) model are also computed and appear to be of comparable accuracy to the Enskog-theory coefficients applied directly to a hard-sphere system, although exact results for the RLP with which to make an extensive comparison are not yet available. The pressure and the transport coefficients obtained from the model (shear viscosity, thermal conductivity, and self-diffusion) are compared with the pressure and the corresponding transport coefficients predicted by the Enskog and square-well kinetic theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.