Abstract

The viscosity and diffusivities of silicate melts under high-pressure, high-temperature conditions are difficult to obtain experimentally. Estimation and extrapolation of transport coefficients are further complicated by their extreme sensitivity to melt composition. Our molecular-dynamics simulations show that, over a broad range of melt composition, temperature, and pressure, the diffusivities correlate with the excess entropy; approximations to the latter can be obtained from the knowledge of the radial distribution function. Using this structure-thermodynamics-dynamics relationship, we show that transport properties of silicate melts can be estimated quantitatively using static structure factor data from experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call