Abstract

We derive the form of the viscous corrections to the phase-space distribution function due to the bulk viscous pressure and shear stress tensor using the iterative Chapman-Enskog method. We then calculate the transport coefficients necessary for the second-order hydrodynamic evolution of the bulk viscous pressure and the shear stress tensor. We demonstrate that the transport coefficients obtained using the Chapman-Enskog method are different than those obtained previously using the 14-moment approximation for a finite particle mass. Specializing to the case of boost-invariant and transversally homogeneous longitudinal expansion, we show that the transport coefficients obtained using the Chapman-Enskog method result in better agreement with the exact solution of the Boltzmann equation in the relaxation-time approximation compared to results obtained in the 14-moment approximation. Finally, we explicitly confirm that the time evolution of the bulk viscous pressure is significantly affected by its coupling to the shear stress tensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call