Abstract

In the unlikely event of a loss-of-coolant accident (LOCA) in a pressurized water reactor, break jet impingement would dislodge thermal insulation from nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS.A systematic study was conducted on various types of fibrous and metallic foil debris to determine their transport in water. Test results reported include incipient movement, bulk movement, accumulation on a screen, the ability of debris to jump over 5-cm (2-in.) and 15-cm (6-in.) curbs, and the effects of accelerating flow and turbulence. These data are currently being used in conjunction with computational fluid dynamics modeling to determine the potential for each debris type to reach the suction screen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.