Abstract

Concentrative nucleoside transporter 1 (CNT1, SLC28A1) is a key molecule for determining the pharmacokinetic/pharmacodynamic profile of a candidate compound derived from a pyrimidine nucleoside, but there is no available information on the differences in the functional profile of this ortholog between man and mouse. Here, using a clone of mouse CNT1 (mCNT1), we investigated its transport characteristics and substrate specificity for synthetic nucleoside analogues, and compared them with those of human CNT1 (hCNT1). In mCNT1-transfected Cos-7 cells, pyrimidine, but not purine, nucleosides showed sodium- and concentration-dependent uptake, and uridine uptake was competitively inhibited by uridine analogues, the rank order of the inhibitory effects being 5-bromouridine > 3′-deoxyuridine > 2′-deoxyuridine. cis- and trans-Inhibition studies involving synthetic nucleoside drugs revealed that gemcitabine and zidovudine greatly inhibited [ 3H]uridine uptake mediated by mCNT1 in the both cases, while cytarabine and zalcitabine showed small cis-inhibitory effect, and no trans-inhibitory effect on the uptake. These results demonstrate that the transport characteristics of mCNT1 are almost the same as those of hCNT1, suggesting that mice may be a good animal model in evaluation of pyrimidine nucleoside analogues as to their applicability in human therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call