Abstract

Structural (volume fractions of the gel phase and the intergel solution) and transport (electrical conductivity, diffusion permeability, transport numbers of counterions and coions) characteristics of cation-exchange (CMX, MK-40) and anion-exchange (AMX, MA-41) membranes in NaCl, CaCl2, and Na2SO4 solutions have been studied. The investigated membranes have the same chemical nature of the ion-exchange matrix and similar values of ion-exchange capacity, but they differ in the degree of heterogeneity and chemical nature of the reinforcing materials. The difference in the properties between heterogeneous (MK-40 and MA-41) and (conventionally) homogeneous (CMX and AMX) membranes is due to the fact that the heterogeneous membranes have macropores, whereas the homogeneous membranes do not have such pores. It has been shown that the largest macropores, which basically determine the high diffusion permeability of heterogeneous membranes, are formed at the boundaries of reinforcing fabric threads and the composite material. Regarding the influence of the electrolyte nature, the sorption of coions of the membrane gel phase (not containing macropores) is of primary importance; the sorption of coions, as well as diffusion permeability and the transport number of coions, increase in the order: 1 : 2 < 1 : 1 < 2 : 1, where the first numeral is the charge of the counterion and the second one is that of the coion. An important role, especially in the case of heterogeneous membranes, is played by the electrolyte diffusion coefficients in the electroneutral solution that fills the central part of meso- and macropores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call