Abstract

Abstract Haze over east China has been extensively studied, but its impacts on downwind areas remain unclear. In this study, we applied long-term (9 yr) air quality, meteorological, and ground-based remote sensing data for investigating the transported haze events over Northern Taiwan in winter. Thirty-six haze events were identified using a statistical method and information pertaining to wind direction and episode duration. In contrast to haze events over China, the transported haze exhibits low relative humidity (approximately 70%) and high wind speed (approximately 5 m s−1) and is associated with a migrating high-pressure system. The mass concentration of fine particulate matter (PM2.5) for the haze events was 57.1 ± 13.6 μg m−3, nearly four times higher than that of the background (13.7 ± 7.4 μg m−3). Such high PM levels persisted for 120 h in winter. Back trajectory analysis suggests that the haze particles were transported from the east coast of China, particularly from the Yangtze River Delta (YRD) area with a traveling time of nearly 28 h. Lidar observations clarify that the Chinese haze was transported to Northern Taiwan and accompanied by low clouds and a temperature inversion layer, which confined the particles to a height of less than 1 km. Moreover, a relatively high PM2.5 concentration (65.0 μg m−3) was observed when air mass stagnated over YRD before advancing to Taiwan. This scenario, most frequently seen in the winter of 2013, resulted in the highest historical PM2.5 concentration (approximately 77.2 μg m−3). We propose that the heavy haze year is primarily attributable to synoptic weather variability and less to climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.