Abstract

Strong ionic interactions in concentrated ionic liquids is shown to result in significant correlations and deviations from ideal solution behavior. We use rigorous concentrated solution theory coupled with molecular dynamics simulations to compute and explain the unusual dependence of transport properties on cation concentration in the Na+-Pyr13+-FSI− ionic liquid electrolyte. When accounting for intra- and inter-species correlation, beyond the commonly used uncorrelated Nernst-Einstein equation, an anomalously low and even negative transference number emerges for xNaFSI lower than 0.2. With increasing concentration the transference number monotonically increases, approaching unity, while the total conductivity decreases as the system transitions to a state resembling a single-ion solid-state electrolyte. The degree of spatial ionic association is explored further by employing unsupervised single-linkage clustering algorithm. We emphasize that strong ion-ion coupling in the electrolyte significantly impacts the trade-off between key electrolyte transport properties, and consequently governs the power density of the battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.