Abstract

We characterized the transport, i.e., time-of-flight, and nanoscale thermal properties of amorphous polymer nanoglobules fabricated via a laser-deposition technique, Matrix-Assisted Pulsed Laser Deposition (MAPLE). Here, we report the first experimental measurement of the velocity of polymer during MAPLE processing and its connection to nanostructured film formation. A nanoscale dilatometry technique using atomic force microscopy was employed to directly measure the thermal properties of MAPLE-deposited polymer nanoglobules. Similarly to bulk stable polymer glasses deposited by MAPLE, polymer nanoglobules were found to exhibit enhanced thermal stability and low density despite containing only thousands of molecules. By directly connecting the exceptional properties of the nanostructured building blocks to those of bulk stable glasses, we gain insight into the physics of glassy polymeric materials formed via vapor-assisted techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.