Abstract
Growing worldwide concern over uranium contamination of groundwater resources has placed an emphasis on understanding uranium transport dynamics and potential toxicity in groundwater-surface water systems. In this study, we utilized novel in-situ sampling methods to establish the location and magnitude of contaminated groundwater entry into a receiving surface water environment, and to investigate the speciation and potential bioavailability of uranium in groundwater and surface water. Streambed temperature mapping successfully identified the location of groundwater entry to the Little Wind River, downgradient from the former Riverton uranium mill site, Wyoming, USA. Diffusive equilibrium in thin-film (DET) samplers further constrained the groundwater plume and established sediment pore water solute concentrations and patterns. In this system, evidence is presented for attenuation of uranium-rich groundwater in the shallow sediments where surface water and groundwater interaction occurs. Surface water grab and DET sampling successfully detected an increase in river uranium concentrations where the groundwater plume enters the Little Wind River; however, concentrations remained below environmental guideline levels. Uranium speciation was investigated using diffusive gradients in thin-film (DGT) samplers and geochemical speciation modelling. Together, these investigations indicate uranium may have limited bioavailability to organisms in the Little Wind River and, possibly, in other similar sites in the western U.S.A. This could be due to ion competition effects or the presence of non- or partially labile uranium complexes. Development of methods to establish the location of contaminated (uranium) groundwater entry to surface water environments, and the potential effects on ecosystems, is crucial to develop both site-specific and general conceptual models of uranium behavior and potential toxicity in affected ground and surface water environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.