Abstract

The potential toxicity of nanoparticles (NPs) has received considerable attention, but there is little knowledge relating to the fate and transport of engineered ZnO NPs in the environment. Column experiments were performed at pH 7.3–7.6 to generate effluent concentrations and retention profiles for assessing the fate and transport of ZnO NPs (PZC=9.3, nominal size 20nm) in saturated quartz sands (256μm) in the presence of low natural organic matter (NOM) concentrations (1mg/L humic and fulvic acids) and millimolar natural organic ligands (NOL) levels (formic, oxalic, and citric acids). At circumneutral pHs, ZnO NPs were positively charged and immobile in sand. The presence of NOM decreased the attachment efficiency facilitating ZnO transport through sand columns. Conversely, ZnO transport in the presence of formic and oxalic acids was only slightly improved when compared to ZnO in DI water; whereas, citric acid showed no improvement. The distinct difference between NOM and NOL may have important implications with regard to ZnO transport in the subsurface environment. Experimental results suggested the presence of both favorable and unfavorable nanoparticle interactions causes significant deviations from classical colloid filtration theory (CFT).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call