Abstract
In fine-grained sediments in which the amount of reduced sulfur retained in stable phases substantially exceeds that present initially in pore waters, rates of sulfate reduction may have equaled or exceeded rates of sulfate transport, resulting in enrichment of [sup 34]S in pore waters and reduction products. Abundance and isotopic compositions of reduced sulfur compounds can be used to calculate the extent of sulfide retention and improve reconstructions of carbon-sulfur oxidation-reduction (redox) budgets. The Miocene Monterey Formation and Upper Devonian New Albany Shale represent distinct types of black shales that accumulated under different conditions of sulfate reduction. Our results suggest that the rate of sulfate reduction was controlled largely by mass transport in the Monterey and by the reduction process itself in the New Albany. Sulfide was more efficiently retained in the Monterey; thus each mole of sulfide in the New Albany represents a greater amount of sedimented organic carbon removed during sulfate reduction. 30 refs., 4 figs., 1 tab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.