Abstract

In this work, we study the dynamics of a single active Brownian particle, as well as the collective behavior of interacting active Brownian particles, in a fluctuating heterogeneous environment. We employ a variant of the diffusing diffusivity model where the equation of motion of the active particle involves a time-dependent motility and diffusivities. Within our model, those fluctuations are coupled to each other. Using analytical methods, we obtain the probability distribution function of particle displacement and its moments for a single particle. We then investigate the impact of the environmental fluctuations on the collective behavior of the active Brownian particles by means of extensive numerical simulations. Our results show that the fluctuations hinder the motility-induced phase separation, accompanied by a significant change of the density dependence of particle velocities. These effects are interpreted using our analytical results for the dynamics of a single particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.