Abstract

Abstract The relative roles of atmospheric motions on various scales, from mesoscale to planetary scale, in transport and mixing in the extratropical tropopause region are investigated using a high-vertical-resolution general circulation model (GCM). The GCM with a vertical resolution of about 300 m explicitly represents the propagation and breaking of gravity waves and the induced transport and mixing. A downward control calculation shows that the Eliassen–Palm (E-P) flux of the gravity waves diverges and induces a mean equatorward flow in the extratropical tropopause region, which differs from the mean poleward flow induced by the convergence of large-scale E-P fluxes. The diffusion coefficients estimated from the eddy potential vorticity flux in tropopause-based coordinates reveal that isentropic motions diffuse air between 20 K below and 10 K above the tropopause from late autumn to early spring, while vertical mixing is strongly suppressed at around 10–15 K above the tropopause throughout the year. The isentropic mixing is mainly caused by planetary- and synoptic-scale motions, while small-scale motions with a horizontal scale of less than a few thousand kilometers largely affect the three-dimensional mixing just above the tropopause. Analysis of the gravity wave energy and atmospheric instability implies that the small-scale dynamics associated with the dissipation and saturation of gravity waves is a significant cause of the three-dimensional mixing just above the tropopause. A rapid increase in the static stability in the tropopause inversion layer is considered to play an important role in controlling the gravity wave activity around the tropopause.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.