Abstract

Magnetohydrodynamic (MHD) activity and energy transport at rational-q surfaces is analysed on the basis of experimental results on current density profile control obtained with localized electron cyclotron resonance heating (ECRH) on FTU tokamak. The MHD response, in particular 2/1 and 1/1 modes, to ECRH is in agreement with expectations from a theoretical model including resistive wall braking and toroidal mode coupling. It is also shown that the magnetic shear at rq = 1 could control m = 1 mode saturation and magnetic reconnection. Heating results with ECRH at steady state indicate that transport enhancement is the dominant effect on confinement at the q = 2 surface, and suggest that conduction and convection inside the asymmetric m = 1 island should both be taken into account for a proper description of the thermal response to localized ECRH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.