Abstract

Abstract This chapter explores the evolution of an ensemble of electrons under stimulus, classically and quantum-mechanically. The classical Liouville description is derived, and then reformed to the quantum Liouville equation. The differences between the classical and the quantum-mechanical description are discussed, emphasizing the uncertainty-induced fuzziness in the quantum description. The Fokker-Planck equation is introduced to describe the evolution of ensembles and fluctuations in it that comprise the noise. The Liouville description makes it possible to write the Boltzmann transport equation with scattering. Limits of validity of the relaxation time approximation are discussed for the various scattering possibilities. From this description, conservation equations are derived, and drift and diffusion discussed as an approximation. Brownian motion arising in fast-and-slow events and response are related to the drift and diffusion and to the Langevin and Fokker-Planck equations as probabilistic evolution. This leads to a discussion of Markov processes and the Kolmogorov equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.