Abstract

The transport of fluids at the nanoscale has achieved major breakthroughs over recent years1–4; however, artificial channels still cannot match the efficiency of biological porins in terms of fluxes or selectivity. Pore shape agitation—due to thermal fluctuations or in response to external stimuli—is believed to facilitate transport in biochannels5–9, but its impact on transport in artificial pores remains largely unexplored. Here we introduce a general theory for transport through thermally or actively fluctuating channels, which quantifies the impact of pore fluctuations on confined diffusion in terms of the spectral statistics of the channel fluctuations. Our findings demonstrate a complex interplay between transport and surface wiggling: agitation enhances diffusion via the induced fluid flow, but spatial variations in pore geometry can induce a slowing down via entropic trapping, in full agreement with molecular dynamics simulations and existing observations from the literature. Our results elucidate the impact of pore agitation in a broad range of artificial and biological porins, but also, at larger scales, in vascular motion in fungi, intestinal contractions and microfluidic surface waves. These results open up the possibility that transport across membranes can be actively tuned by external stimuli, with potential applications to nanoscale pumping, osmosis and dynamical ultrafiltration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.