Abstract

The impact of ionic strength and cation valence on the transport and deposition kinetics of ZnO nanoparticles in saturated porous media was systematically investigated in this research. Packed column experiments were performed over a series of environmentally relevant ionic strength in both NaCl (ranging from 1 to 20mM) and CaCl2 (ranging from 0.1 to 1mM) solutions. Solution chemistries (ionic strength and ion types) greatly affected the transport of ZnO nanoparticles in saturated quartz sand. Flat breakthrough plateaus were observed at relatively low ionic strength in both NaCl (1 and 5mM) and CaCl2 (0.1–0.5mM) solutions, whereas, ripening was observed at high ionic strength (10 and 20mM in NaCl, and 1mM CaCl2) conditions. Deposition of nanoparticle increased with increasing solution ionic strength in both monovalent and divalent salt solutions. The presence of divalent ions in solutions increased nanoparticle deposition in quartz sand. Under all examined conditions, nanoparticles mainly retained at segments near the column inlet. The retained ZnO nanoparticle concentrations versus transport distance decreased faster than the theory prediction of log-linear decrease under all examined conditions. Our study found that concurrent aggregation of ZnO nanoparticles occurred during the transport process, which contributed to the hyper-exponential retained profiles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call