Abstract

AbstractThe Kronian moon Enceladus is constantly feeding its surrounding with new gas and dust, from cryovolcanoes located in its south polar region. Through photoionization and impact ionization of these neutrals, a plasma disk is created, which mainly contains hydrogen ions and water group ions. This paper investigates the importance of ion loss by outward radial transport and ion loss by dissociative recombination, which is the dominant chemical loss process in the inner plasma disk. We use plasma densities derived from several years of measurements by the Cassini Radio and Plasma Wave Science electric field power spectral density and Langmuir probe to calculate the total flux tube content NL2. Our calculation shows that NL2 agrees well with earlier estimates within dipole L shell 8. We also show that loss by transport dominates chemical loss between L shells 4 and 10. Using extrapolation of available measurements, we extend the study to include L shells 2.5 to 4. The results indicate that loss by transport dominates chemical loss also between L shells 2.5 and 4. The loss rate by transport is around five times larger at L shell 5, and the difference increases as L7.7 beyond L = 5, for the net ion population. Chemical loss may still be important for the structure of the plasma disk in the region closest to Enceladus (around ±0.5 RS) at 3.95 RS (1 RS = Saturn's equatorial radius = 60,268 km), since the transport and chemical loss rates only differ by a factor of ∼2 in this region. We also derive the total plasma content of the plasma disk between L shells 4 and 10 to be 1.9 × 1033 ions and the total ion source rate for the same region to be 5.8 × 1027 s−1. The estimated equatorial ion production rate P ranges from 2.6 × 10−5 cm−3 s−1 (at L = 10) to 1.1 × 10−4 cm−3 s−1 (at L = 4.8). The net mass loading rate is derived to be 123 kg/s for L shells 4 to 10.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call