Abstract

The production of $K^+$ mesons in proton-nucleus collisions from 1.0 to 2.3 GeV is analyzed with respect to one-step nucleon-nucleon $(NN\to N Y K^+$) and two-step $\Delta$-nucleon $(\Delta N \to K^+ Y N$) or pion-nucleon $(\pi N \to K^+ Y $) production channels on the basis of a coupled-channel transport approach (CBUU) including the kaon final-state-interactions (FSI). Momentum-dependent potentials for the nucleon, hyperon and kaon in the final state are included as well as $K^+$ elastic rescattering in the target nucleus. The transport calculations are compared to the experimental $K^+$ spectra taken at COSY-J\"ulich. Our systematic analysis of $K^+$ spectra from $^{12}C$, $^{63}Cu$, $^{107}Ag$ and $^{197}Au$ targets as well as their momentum differential ratios gives a repulsive $K^+$ potential of $20\pm 5 $ MeV at normal nuclear matter density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.