Abstract

AbstractGeomechanical deformation can alter the flow field that impacts solute mass fluxes. Despite its importance, the effects of the coupling between geomechanical deformation and the flow field on solute transport behavior are not fully known. In this paper, we study the impact of this coupling on the solute concentration distribution. The concentration field is semianalytically derived by making use of the generalized integral transform technique. We apply the semianalytical solution to two uniaxial consolidation problems, the classical Terzaghi's problem with a constant load and the case of periodic loading of a porous deformable layer. Our results indicate that geomechanical parameters, such as the Skempton's coefficient and the soil compressibility, can affect the peak concentration as well as the spatial moments of solute plume. In case of periodic loading, we show that the frequency of loading also plays a key role in regulating the temporal dynamics of the concentration field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call