Abstract

The response of transport in low density (line average ) plasmas to electron cyclotron resonance heating (ECH) power, 100 kW ≲ QECH ≲ 400 kW, is documented for the TJ-II Heliac-type stellarator. Radially resolved electron heat balance shows no significant differences between boron or lithium coating of the vacuum chamber walls. The main trends in electron heat transport are found to be similar to other stellarator/heliotron devices and are compatible with neoclassical calculations in the bulk of the plasma. According to our calculations the heat fluxes are anomalous near the edge, ρ ≳ 0.8 where ρ is the normalized minor radius, but the uncertainties there are large. Particle transport in the density gradient region, ρ ≈ 0.8, has little sensitivity to the variation of heating power and is compatible with neoclassical predictions. Neoclassical transport of particles and electron heat is found to be dominant in the gradient regions of typical ECH plasmas of the TJ-II Heliac.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.