Abstract

Replacement of NH3 by a planar amine L to give trans-[PtCl2(L)(L')] (L = NH3, L'= pyridine or substituted pyridine, quinoline, isoquinoline, thiazole; L = L'= pyridine, thiazole), greatly enhances the cytotoxicity of the transplatinum geometry. The "parent" compound trans-[PtCl2(NH3)2] is therapeutically inactive. Modification of the ligands to an [N2O2] donor set, where O represents an acetate leaving group, enhances the aqueous solubility while retaining the cytotoxicity of the parent chloride compounds. The effect of two mutual trans leaving groups with weak trans influence is to impart remarkable chemical stability on the structure. This strategy is analogous to the use of the inert dicarboxylate leaving groups in the clinical compounds carboplatin and oxaliplatin. In this paper, systematic modification of the steric effects of carrier pyridine groups and, especially, carboxylate leaving groups in trans-[Pt(O2CR)2(NH3)(pyr)] is shown to modulate aqueous solubility and hydrolysis to the activated aqua species. The results presented here demonstrate the utility of the "carboxylate strategy" in "fine-tuning" the chemical and pharmacokinetic properties in the design of clinically relevant transplatinum complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.