Abstract
Transplanted hepatocytes integrate in the liver parenchyma and exhibit gene expression patterns that are similar to adjacent host hepatocytes. To determine the fate of genetically marked hepatocytes in the context of hepatocellular proliferation throughout the rodent life span, we transplanted Fischer 344 (F344) rat hepatocytes into syngeneic dipeptidyl peptidase IV-deficient rats. The proliferative activity in transplanted hepatocytes was studied in animals ranging in age from a few days to 2 yr. Transplanted hepatocytes proliferated during liver development between 1 and 6 wk of age, each dividing an estimated two to five times. DNA synthesis in occasional cells was demonstrated by localizing bromodeoxyuridine incorporation. There was no evidence for transplanted cell proliferation between 6 wk and 1 yr of age. Subsequently, transplanted cells proliferated again, with increased sizes of transplanted cell clusters at 18 and 24 mo of age. The proliferative activity of transplanted cells was greater in rats entering senescence compared with during postnatal liver development. In old rats, some liver lobules were composed entirely of transplanted cells. We conclude that hepatocyte proliferation in the livers of very young and old F344 rats is regulated in a temporally determined, biphasic manner. The findings will be relevant to mechanisms concerning liver development, senescence, and oncogenesis, as well as to cell and gene therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Gastrointestinal and liver physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.