Abstract

BackgroundWe previously demonstrated that vascular endothelial growth factor receptor type 2 (VEGF-R2)-positive cells induced from mouse embryonic stem (ES) cells can differentiate into both endothelial cells (ECs) and mural cells (MCs) and these vascular cells construct blood vessel structures in vitro. Recently, we have also established a method for the large-scale expansion of ECs and MCs derived from human ES cells. We examined the potential of vascular cells derived from human ES cells to contribute to vascular regeneration and to provide therapeutic benefit for the ischemic brain.MethodsPhosphate buffered saline, human peripheral blood mononuclear cells (hMNCs), ECs-, MCs-, or the mixture of ECs and MCs derived from human ES cells were intra-arterially transplanted into mice after transient middle cerebral artery occlusion (MCAo).ResultsTransplanted ECs were successfully incorporated into host capillaries and MCs were distributed in the areas surrounding endothelial tubes. The cerebral blood flow and the vascular density in the ischemic striatum on day 28 after MCAo had significantly improved in ECs-, MCs- and ECs+MCs-transplanted mice compared to that of mice injected with saline or transplanted with hMNCs. Moreover, compared to saline-injected or hMNC-transplanted mice, significant reduction of the infarct volume and of apoptosis as well as acceleration of neurological recovery were observed on day 28 after MCAo in the cell mixture-transplanted mice.ConclusionTransplantation of ECs and MCs derived from undifferentiated human ES cells have a potential to contribute to therapeutic vascular regeneration and consequently reduction of infarct area after stroke.

Highlights

  • We previously demonstrated that vascular endothelial growth factor receptor type 2 (VEGF-R2)-positive cells induced from mouse embryonic stem (ES) cells can differentiate into both endothelial cells (ECs) and mural cells (MCs) and these vascular cells construct blood vessel structures in vitro

  • We examined whether ECs and MCs derived from human ES cells could serve as a source for vasculogenesis in order to contribute to therapeutic neovascularization and to neuroprotection in the ischemic brain

  • After five passages in culture (= approximately 30 days after the sorting), we obtained the expanded cells as a mixture of ECs and MCs derived from human ES cells

Read more

Summary

Introduction

We previously demonstrated that vascular endothelial growth factor receptor type 2 (VEGF-R2)-positive cells induced from mouse embryonic stem (ES) cells can differentiate into both endothelial cells (ECs) and mural cells (MCs) and these vascular cells construct blood vessel structures in vitro. Various methods for therapeutic angiogenesis, including delivery of angiogenic factor [1,2] or cell transplantation [3,4,5], have been used to induce collateral blood vessel development in several animal models of cerebral ischemia. Endothelial progenitor cells (EPCs), which have been recognized as cellular components of the new vessel structure and reserved in the bone marrow, can take an important part in tissue neovascularization after ischemia [6]. Previous reports demonstrated that transplantation of mouse bone marrow cells after cerebral ischemia increased the cerebral blood flow partially via the incorporation of EPCs into host vascular structure as vasculogenesis [4]. Because the population of EPCs in the bone marrow and in the peripheral blood has been revealed to be very small [7], it is recognized to be difficult to prepare enough EPCs for the promotion of therapeutic vaculogenesis after ischemia

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call