Abstract

Previously the authors reported on a Hybrid Artificial Pancreas device that maintained patent vascular anastomoses in normal dogs and, when seeded with allogeneic canine islets, maintained normal fasting blood sugars (FBS) in diabetic pancreatectomized dogs. Eventual failure of these devices was believed to be related to loss of islet viability and/or insufficient islet mass. The current study evaluates the effect of increased islet mass produced by implantation of two islet-seeded devices in pancreatectomized dogs and compares the results with those from dogs that received a single device. Twelve of fifteen dogs receiving single devices showed initial function as determined by elimination or reduction of exogenous insulin requirement; four showed initial function and seven showed extended function (100 to 284 days). Excessive weight loss (more than 20%), despite normal FBS and insulin dependence, required that four animals in this latter group be killed. Devices seeded with xenogeneic islets have met with limited success. One dog that received two bovine islet-seeded devices achieved function for more than 100 days; the remaining bovine-seeded devices (n = 8) functioned for only 3 to 16 days. Porcine islet-seeded devices were assessed by intravenous glucose tolerance tests (IVGTT). Recipients of two devices seeded with allogeneic islets demonstrated improved IVGTT results when compared to those from pancreatectomized dogs and recipients of single devices but were abnormal when compared to intact animals. Histologic examination of device and autopsy material from all failed experiments was performed and showed no mononuclear cell infiltration of the islet chamber or vascular graft material, only a few incidence of device thrombosis, and varying degrees of islet viability as judged by morphologic and immunohistochemical evaluation. The authors believe they have demonstrated progress toward the development and clinical applicability of the Hybrid Artificial Pancreas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.