Abstract

The failure rates of synthetic vascular grafts, when placed in low blood flow environments in humans, are not acceptable. Thus, endothelial cell (EC) seeding technology of vascular grafts was developed to prepare prostheses lined with a human monolayer expressing optimal thromboresistant properties. In a clinical setting, endothelialization of a graft can be achieved using higher cell seeding densities, or by creating a surface on which EC can adhere and grow to confluence. But, human endothelial cells show little or no proliferation on the currently available graft materials. In this study, surface modification of PTFE and ePTFE by ammonia plasma treatment was carried out to enhance its interactions with ECM protein, EC growth factors, and with EC harvested from human umbilical vein (HUVEC), and from human saphenous veins (HSVEC). Our data shows that various vascular graft materials generated from ammonia plasma treated PTFE and ePTFE exhibited statistically significant improvements in HUVEC and HSVEC growth when compared to their respective controls (p values < 0.001). Growth of HSVEC on ammonia plasma treated ePTFE without ECM protein coating was also found to be statistically significant in comparison to that on fibronectin coated ePTFE (p < 0.001). The final HSVEC cell densities found on various ePTFE surfaces prepared from ammonia plasma treated ePTFE, suggests that transplantation of HSVEC monolayers on vascular prostheses can be established within clinically relevant times. Ammonia plasma treatment process provides an unique opportunity to surface modify prosthetic materials of various construct to transplant mammalian cells including those that have undergone ex vivo gene transfer, and to deliver angiogenic molecules to a target area for tissue development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.