Abstract

We recently demonstrated that injury/ischemia-induced multipotent stem cells (iSCs) develop within post-stroke human brains. Because iSCs are stem cells induced under pathological conditions, such as ischemic stroke, the use of human brain-derived iSCs (h-iSCs) may represent a novel therapy for stroke patients. We performed a preclinical study by transplanting h-iSCs transcranially into post-stroke mouse brains 6 weeks after middle cerebral artery occlusion (MCAO). Compared with PBS-treated controls, h-iSC transplantation significantly improved neurological function. To identify the underlying mechanism, green fluorescent protein (GFP)-labeled h-iSCs were transplanted into post-stroke mouse brains. Immunohistochemistry revealed that GFP+ h-iSCs survived around the ischemic areas and some differentiated into mature neuronal cells. To determine the effect on endogenous neural stem/progenitor cells (NSPCs) by h-iSC transplantation, mCherry-labeled h-iSCs were administered to Nestin-GFP transgenic mice which were subjected to MCAO. As a result, many GFP+ NSPCs were observed around the injured sites compared with controls, indicating that mCherry+ h-iSCs activate GFP+ endogenous NSPCs. In support of these findings, coculture studies revealed that the presence of h-iSCs promotes the proliferation of endogenous NSPCs and increases neurogenesis. In addition, coculture experiments indicated neuronal network formation between h-iSC- and NSPC-derived neurons. These results suggest that h-iSCs exert positive effects on neural regeneration through not only neural replacement by grafted cells but also neurogenesis by activated endogenous NSPCs. Thus, h-iSCs have the potential to be a novel source of cell therapy for stroke patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call