Abstract

Multiple myeloma (MM) is a hematological malignancy of plasma cells that remains incurable despite significant progress with myeloablative regimens and autologous stem cell transplantation for eligible patients and, more recently with T cell redirected immunotherapy. Recently, we reported that ex vivo virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an autologous-transplant Balb/c mouse model. Here, we tested the Vk*MYC transplantable C57BL/6 mouse MM model that more closely recapitulates human disease. In vitro, the murine bortezomib-resistant Vk12598 cell line is fully susceptible to MYXV infection. In vivo results demonstrate: (i) autologous bone marrow (BM) leukocytes armed ex vivo with MYXV exhibit moderate therapeutic effects against MM cells pre-seeded into recipient mice; (ii) Cyclophosphamide in combination with BM/MYXV delays the onset of myeloma in mice seeded with Vk12598 cells; (iii) BM/MYXV synergizes with the Smac-mimetics LCL161 and with immune checkpoint inhibitor α-PD-1 to control the progression of established MM in vivo, resulting in significant improvement of survival rates and decreased of tumor burden; (iv) Survivor mice from (ii) and (iii), when re-challenged with fresh Vk12598 cells, developed acquired anti-MM immunity. These results highlight the utility of autologous BM grafts armed ex vivo with oncolytic MYXV alone or in combination with chemotherapy/immunotherapy to treat drug-resistant MM in vivo.

Highlights

  • Multiple myeloma (MM) is the second most common hematological malignancy in the world [1, 2]

  • In vivo results demonstrate: (i) autologous bone marrow (BM) leukocytes armed ex vivo with myxoma virus (MYXV) exhibit moderate therapeutic effects against MM cells pre-seeded into recipient mice; (ii) Cyclophosphamide in combination with BM/MYXV delays the onset of myeloma in mice seeded with Vk12598 cells; (iii) BM/MYXV synergizes with the second mitochondrial-derived activator of caspases (Smac)-mimetics LCL161 and with immune checkpoint inhibitor α-PD-1 to control the progression of established MM in vivo, resulting in significant improvement of survival rates and decreased of tumor burden; (iv) Survivor mice from (ii) and (iii), when re‐challenged with fresh Vk12598 cells, developed acquired anti-MM immunity

  • We found that treatment of recipient mice bearing Vk12598 cells with autologous bone marrow (BM) cells ex vivo treated with either un-armed or human TNF-armed MYXV virus constructs and in combination with the second mitochondrial-derived activator of caspases (Smac)-mimetics compound LCL161 and the immune checkpoint inhibitor (ICI) α-PD-1 resulted in long-term survival and decrease of tumor burden in recipient mice

Read more

Summary

Introduction

Multiple myeloma (MM) is the second most common hematological malignancy in the world [1, 2]. MM is characterized by the clonal expansion of malignant plasma cells (PCs) within a permissive bone marrow microenvironment that promotes the survival and proliferation of tumor cells [3–5]. Despite continued advances in new generations of drugs and novel therapies such as CAR-T cells, high dose ablative chemotherapy/radiotherapy along with autologous stem cell transplantation for eligible patients are still standard therapies used to treat myeloma patients [1]. The imminent relapse of the disease and its subsequent acquired resistance to existing drug therapies remain major challenges that still need to be overcome in order to assure long-term patient survival. We reported compelling experimental evidence indicating that the oncolytic myxoma virus (MYXV) can eliminate minimal residual MM disease in the setting of either allogeneic- [6] or autologous-stem [7] cell transplantation in an immunocompetent Balb/c mouse transplanted with mineral-oil induced plasmacytomas (MOPC)315.BM.dsRed cells [8]. We aimed to overcome some of these limitations by using a mouse model of MM that more faithfully recapitulates the development, clinical manifestations and localization of the disease observed in human MM patients

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.