Abstract

BackgroundGastrointestinal complications are the main cause of death in patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Available treatments often restore biochemical homeostasis, but fail to cure gastrointestinal symptoms.MethodsWe evaluated the small intestine neuromuscular pathology of an untreated MNGIE patient and two recipients of hematopoietic stem cells, focusing on enteric neurons and glia. Additionally, we evaluated the intestinal neuromuscular pathology in a mouse model of MNGIE treated with hematopoietic stem cell gene therapy. Quantification of muscle wall thickness and ganglion cell density was performed blind to the genotype with ImageJ. Significance of differences between groups was determined by two-tailed Mann-Whitney U test (P < 0.05).ResultsOur data confirm that MNGIE presents with muscle atrophy and loss of Cajal cells and CD117/c-kit immunoreactivity in the small intestine. We also show that hematopoietic stem cell transplantation does not benefit human intestinal pathology at least on short-term.ConclusionsWe suggest that hematopoietic stem cell transplantation may be insufficient to restore intestinal neuropathology, especially at later stages of MNGIE. As interstitial Cajal cells and their networks play a key role in development of gastrointestinal dysmotility, alternative therapeutic approaches taking absence of these cells into account could be required.

Highlights

  • Gastrointestinal complications are the main cause of death in patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)

  • Allogeneic hematopoietic stem cell transplantation (HSCT) corrects the biochemical metabolic imbalance as donor-derived leucocytes and platelets are rich in thymidine phosphorylase [4]

  • We evaluated the effects of treatment on small intestinal pathology of MNGIE patients and mice

Read more

Summary

Introduction

Gastrointestinal complications are the main cause of death in patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Available treatments often restore biochemical homeostasis, but fail to cure gastrointestinal symptoms. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare inherited metabolic disorder caused by loss-of-function mutations in the nuclear gene TYMP leading to thymidine (Thd) and deoxyuridine (d-Urd) accumulation [1]. Alongside classic neurological signs (external ophtalmoplegia, leukoencephalopathy and sensorimotor peripheral neuropathy), chronic intestinal pseudo-obstruction (CIPO) is reported in almost all MNGIE patients and occurs at onset in 45–67% of cases [2, 3]. Whether small intestine pathology is recapitulated in the mouse model of MNGIE is not known [11, 12]. We evaluated the effects of treatment on small intestinal pathology of MNGIE patients and mice

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call