Abstract

The theme of this review is modulation of extension growth in transplant production through restraint of watering of the seedlings. The purpose of the modulation is to produce transplants of 1) appropriate height for ease of field setting and 2) adequate stress tolerance to withstand outdoor environmental conditions. Physiological responses of the plant are discussed in relation to the degree of water deficit stress and are related to the degree of hardening or stress tolerance development in the transplants. Optimal stress tolerance or techniques for measuring same have not been fully defined in the literature. However, stress tolerance in seedlings is necessary to withstand environmental forces such as wind and sand-blasting after the seedlings are transplanted in the field. It is also imperative that the seedlings undertake a rapid and sustained rate of growth after outdoor transplanting. Water deficit stress applied to plants elicits many different physiological responses. For example, as leaf water potential begins to decrease, leaf enlargement is inhibited before photosynthesis or respiration is affected, with the result of a higher rate of dry matter accumulation per unit leaf area. The cause of the reduced leaf area may be a result of reduced K uptake by the roots with a concomitant reduction in cell expansion. Severe water deficits however, result in overstressed seedlings with stunted growth and poor establishment when transplanted into the field. In transplant production systems, appropriate levels of water deficit stress can be used as a management tool to produce seedlings conducive to the transplanting process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call