Abstract

ABSTRACTDrought is a major abiotic stress responsible for severe crop losses worldwide. Development of new crop varieties with increased drought tolerance is one way to increase crop productivity. The aim of this study was to characterise the diversity of nine accessions belonging to Amaranthus tricolor and A. cruentus, in response to drought stress using a dry-down protocol to characterise the transpiration efficiency (TE). Plants were subjected to either a gradual dry down or well-watered conditions. Results showed that TE was significantly higher (P < 0.01) in water-deficient (WD) plants compared to water-sufficient (WS) plants, 2.40 g kg−1–7.13 g kg−1 and 2.19 g kg−1–4.84 g kg−1, respectively. There was no significant difference in the fraction of transpirable soil water (FTSW) threshold decline between the amaranth genotypes. TE was highly correlated with yield under both WS (r = 0.89, P < 0.001) and WD conditions (r = 0.662, P < 0.001), and negatively correlated with root-to-shoot ratio under both WS (r = −0.488, P < 0.05) and WD conditions (r = −0.460, P < 0.05). Significant genotypic differences were seen for growth rate and stress susceptibility index (SSI). The result obtained in this investigation underline the need to identify genotypic variation in water use efficiency in amaranth.Abbreviations: FTSW: Fraction of transpirable soil water; NTR: normalised transpiration rate; SSI: Stress susceptibility index; TE: transpiration efficiency; WHC: water holding capacity; WD: water-deficient; WS: water-sufficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call