Abstract
The transpiration cooling mechanisms used for thermal protection of a nose cone was investigated experimentally and numerically for various cooling gases. The effects of injection rates, model geometry, inlet temperature and Reynolds number of the main stream were studied for air, nitrogen, argon, carbon dioxide and helium. The experiments used a hot gas wind tunnel with T ∞ = 375 K and 425 K and Re ∞ = 4630–10,000. The experimental results indicated that even a small amount of coolant injection drastically reduced the heat transfer from the hot gases with the cooling effectiveness increasing with increasing injection rate, although the increases became smaller as the gas injection rate was further increased. The temperature and cooling effectiveness distribution along the transpiration surface of the nose cone model exhibited similar tendencies for all the coolants employed in present experimental research. The temperature decreased from the stagnation point towards the downstream region, then increased because of the non-uniform mass flow distribution of the coolant and thermal conduction from the metal backplane, whereas the cooling effectiveness variation was the reverse. The local cooling effectivenesses and thermal capacities were found to depend on the coolant thermophysical properties. Two-dimensional numerical simulations using the RNG κ−ε turbulence model for the main stream flow and the Darcy–Brinkman–Forchheimer momentum equations and thermal equilibrium model for the porous zone compared well with the general features in the experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.