Abstract

The phospholipase D (PLD) from Streptomyces chromofuscus belongs to the superfamily of PLDs. All the enzymes included in this superfamily are able to catalyze both hydrolysis and transphosphatidylation activities. However, S. chromofuscus PLD is calcium dependent and is often described as an enzyme with weak transphosphatidylation activity. S. chromofuscus PLD-catalyzed hydrolysis of phospholipids in aqueous medium leads to the formation of phosphatidic acid. Previous studies have shown that phosphatidic acid-calcium complexes are activators for the hydrolysis activity of this bacterial PLD. In this work, we investigated the influence of diacylglycerols (naturally occurring alcohols) as candidates for the transphosphatidylation reaction. Our results indicate that the transphosphatidylation reaction may occur using diacylglycerols as a substrate and that the phosphatidylalcohol produced can be directly hydrolyzed by PLD. We also focused on the surface pressure dependency of PLD-catalyzed hydrolysis of phospholipids. These experiments provided new information about PLD activity at a water-lipid interface. Our findings showed that classical phospholipid hydrolysis is influenced by surface pressure. In contrast, phosphatidylalcohol hydrolysis was found to be independent of surface pressure. This latter result was thought to be related to headgroup hydrophobicity. This work also highlights the physiological significance of phosphatidylalcohol production for bacterial infection of eukaryotic cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.