Abstract

Commercial nanocrystalline yttrium aluminum garnet (nc-YAG) powders were used for fabrication of dense and transparent YAG by spark plasma sintering (SPS). Spherical 34 nm size particles were densified by SPS between 1200 and 1500 °C using 50 and 100 MPa pressures for 3, 6, and 9 min durations. Fully dense and transparent polycrystalline cubic YAG with micrometer grain size were fabricated at very moderate SPS conditions, i.e. 1375 °C, 100 MPa for 3 min. Increase in the SPS duration and pressure significantly increased the density especially at the lower temperature range. The observed microstructure is in agreement with densification by nano-grain rotation and sliding at lower densities, followed by curvature driven grain boundary migration and normal grain growth at higher densities. Residual nanosize pores at the grain boundary junctions are an inherent microstructure feature due to the SPS process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call