Abstract

Optically transparent wood (TW) is an emerging candidate for applications in energy efficient buildings. In this study, anti-ultraviolet and infrared heat shielding TW was prepared based on the delignification of the wood's substrate. This was followed by infiltration of pre-polymerized methyl methacrylate (PMMA) with modified antimony-doped tin oxide (ATO) nanoparticles. The ATO addition enhanced the interfacial bonding among the compounds, which improved the fracture strength, leading to a high fracture strength of 96.4 MPa and modulus of 4.27 GPa with addition of 0.3% ATO. Furthermore, the obtained ATO/TW exhibited high transparency, excellent near infrared (NIR) heat shielding performance, and ultraviolet (UV) shielding properties according to the ultraviolet–visible spectrophotometer measurement, the infrared heat shielding simulation test, and the UV-shielding test. The TW treated with 0.3% ATO still maintained a very low thermal conductivity of around 0.2 W m−1 K−1. After addition of 0.7% ATO, the obtained TW had a quite low UV transmittance of <20%. The Aspergillus niger maintained high viability after UV irradiation treatment when shielded with TW treated with 0.7% ATO. The findings indicate that the multifunctional and durable ATO/TW has a potential to be used as energy-saving building material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call