Abstract

This study aims at investigating flexible and transparent thermoplastic polyurethane (TPU) as a novel material for triboelectric nanogenerator (TENG) devices with a polyethylene terephthalate layer. Devices having TPU-either as a flat film or as electrospun micrometer-dimension fibers with varying concentrations of TPU-were tested. The best output performing device provided 21.4 V and 23 μA as open-circuit voltage and short-circuit current respectively, with the application of a small force of 0.33 N indicating the high efficiency of the device. Devices with flat films-obtained using the doctor-blade (DB) technique-have high transparency (80%) as well as high TENG output. The topography of the TPU layer, characterized by atomic force microscopy, reveals nanoscale roughness of the film surface. Finally, we demonstrate that gentle hand tapping on the TENG device can power upto 11 light-emitting diodes (LEDs). The high transparency, lightweight, simple fabrication, flexibility, and robust features of such device make it an added value for various optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.